
1

ZR User API

This is a quick guide to the functions used to control a SPHERES satellite in Zero Robotics.
These functions do not change from game to game. All of them except DEBUG are accessed as
members of the api object; that is, they are called as api.function(arguments).

BASIC
void setPositionTarget(
float posTarget[3])

Sets a point as the position target
Argument: array of three floats—x, y, and z position
Return value: None

void setAttitudeTarget(
float attTarget[3])

Sets a unit vector direction for the satellite to point toward
Argument: array of three floats—x, y, and z components of unit
vector
Return value: None

void setVelocityTarget(
float velTarget[3])

Sets the closed-loop x, y, and z components of the target velocity
vector
Argument: array of three floats—x, y, and z velocity
Return value: None

void setAttRateTarget(
float attRateTarget[3])

Sets the closed-loop target rotation rate components on the body
frame
Argument: array of three floats—rotation rates about the x, y, and
z axes
Return value: None

void setForces(float
forces[3])

Sets the open-loop x, y, and z forces to be applied to the satellite
Argument: array of three floats—x, y, and z forces
Return value: None

void setTorques(float
torques[3])

Sets the open-loop x, y, and z torques to be applied to the satellite
Argument: array of three floats—torques about the x, y, and z
axes
Return value: None

void getMyZRState(float
myState[12])

Gets the current state of the satellite in the following format:
Places/indices 0-2: Position
 3-5: Velocity
6-8: Attitude vector
9-11: Rotation rates
Arguments: Array of 12 floats to store the state
Return value: None

void getOtherZRState(
float otherState[12])

Same as getMyZRState but gets the state of the opponent’s
satellite

unsigned int getTime() Gets the time (in seconds) elapsed since the beginning of the
game
NOTE: This function is new for the 2013 season.
Arguments: None
Return value: Unsigned int containing time in seconds

2

DEBUG((“Some text!”)) Prints the supplied text to the console. Accepts formatted strings
in the same format as the standard C printf function.
NOTE: Make sure to use double parentheses. Do not type api.
before this function.
Arguments: String to be printed
Return value: None

ADVANCED
void setQuatTarget(float quat[4]) Specifies a SPHERES quaternion attitude target for the

satellite. Note that the scalar part of the quaternion
Argument: array of four floats—quaternion components
Return value: None

void getMySphState(float
myState[13])

Gets the current SPHERES state (with quaternion
attitude) for the satellite in the following format:
Places/indices 0-2: Position
 3-5: Velocity
6-9: Attitude quaternion
10-12: Rotation rates
Arguments: Array of 13 floats to store the state
Return value: None

void getOtherSphState(float
otherState[13])

Same as getMySphState but gets the state of the
opponent’s satellite

void spheresToZR(float
stateSph[13], float stateZR[12])

Converts a 13-element state SPHERES state to a 12-
element ZR state
Arguments: Array of 13 floats containing a SPHERES
state and an array of 12 floats to store the ZR state
Return value: None

void attVec2Quat(float refVec[3],
float attVec[3], float baseQuat[4],
float quat[4])

Finds the quaternion that rotates refVec to attVec.
This function determines the quaternion rotation from a
user unit vector in the global frame. baseQuat defines the
orientation of the satellite when refVec points in the
desired direction. Setting baseQuat to something other
than {0,0,0,1} allows the satellite to be rotated around the
reference vector. In ZR, baseQuat is typicaly {1,0,0,0} to
point the tank toward global +Z.

When using this function to find the minimal rotation
from the current attitude to a target attitude, it is advised
to supply the current pointing direction in refVec, the
desired attitude in attVec, and the current quaternion
attitude in baseQuat. Since one of the degrees of freedom
is unconstrained, using another approach can result in
unexpected rotations about the pointing direction.

Arguments:
refVec—unit vector that specifies the body direction

3

corresponding to no rotation. In ZR this is typcially the
velcro (-X) face of the satellites, so refVec is {-1,0,0}.
attVec—unit vector specifying the desired pointing
direction
baseQuat—quaternion specifying if there should be an
initial rotation applied to the reference frame before
calculating the output quaternion. For a tank-down
nominal attitude, this should be {1,0,0,0} for a 180
degree rotation about X.
quat—quaternion converted from attVec
Return value: None

void quat2AttVec(float refVec[3],
float quat[4], float attVec[3])

Converts a quaternion into a ZR attitude vector by
rotating the supplied unit vector refVec using quat to
determine the direction of attVec.
NOTE: refVec is not copied to local storage, so it should
be a different variable from attVec.
Arguments:
refVec unit vector that specifies the body direction
corresponding to no rotation. In ZR this is typically the
velcro (-X) face of the satellites, so refVec is {-1,0,0}.
quat—quaternion to convert to ZR attitude vector
attVec—converted attitude vector

void setPosGains(float P, float I,
float D)

Sets the position controller gains
Arguments: float P (proportional gain), float I (integral
gain), float D (derivative gain)
Return value: None

void setAttGains(float P, float I,
float D)

Sets the attitude controller gains
Arguments: float P (proportional gain), float I (integral
gain), float D (derivative gain)
Return value: None

void setCtrlMeasurement(float
myState[13])

Sets the state measurement to be used in the standard ZR
controllers instead of the default getMySphState()
Arguments: float state[13]
Return value: None

void setControlMode(
CTRL_MODE posCtrl,
CTRL_MODE attCtrl)

Sets the control mode for position and attitude control.
The default is PD for position and PID for attitude.
Arguments: Each of the two arguments should be one of
the two macros CTRL_PD and CTRL_PID
Return value: None

void setDebug(float values[7]) Adds an array of 7 user-defined debugging values to the
satellite telemetry. The data can then be plotted with the
ZR plotting tools.
Arguments: Array of 7 floats
Return value: None

