ZER
 ROBOTICS
 SPHERES CHALLENGE 2010

Rotate to Face Target Tutorial

Aaurora
DABPA

ZER

R•8OTICS

ROTATE THE SATELLITE TO POINT TOWARDS A TARGET

AAurora
DARPA PS

HUSETS SPACE GRANT CONSO RHMO
NASA

ZER웅

Rotate to face a target

- Objective: command the satellite to rotate to face a target
- The target will be the point $(0.3,0.3,0.3)$

-Aurora
DABPA

ZER웅

Make a Plan

Inputs/Outputs

- loop provides:
- myState[12]
- time
- We can use
- api.setAttitudeTarget

You have to:

1. Calculate the vector from your satellite to the target
2. Create a unit vector from the relative vector
3. Set the directional vector as a target with the api.setAttitudeTarget(float *attTarget) function

ZERO

R•8OTICS

Calculate Relative Vector

$R=$ Satellite to Target relative vector
T = Target position vector
S = Satellite position vector
To find the relative vector, we subtract the satellite's position from that of the target.

> myState + satelliteToTargetReIVec = targetPosition
> satelliteToTargetReIVec = targetPosition - myState

The detailed equation is:
$\left(\begin{array}{l}\mathrm{R}_{\mathrm{x}} \\ \mathrm{R}_{\mathrm{x}} \\ \mathrm{R}_{\mathrm{x}}\end{array}\right)=\left(\begin{array}{l}\mathrm{T}_{\mathrm{x}} \\ = \\ \mathrm{T}_{\mathrm{x}} \\ \mathrm{T}_{\mathrm{x}}\end{array}\right)-\left(\begin{array}{l}\mathrm{S}_{\mathrm{x}} \\ \mathrm{S}_{\mathrm{x}} \\ \mathrm{S}_{\mathrm{x}}\end{array}\right)$

ZERO R@BOTICS
 Normalizing The Relative Vector

In order to specify direction, the relative vector needs to be normalized.
A nonzero vector is normalized by dividing it by its length. The resulting vector has length 1 and lies in the same direction.

In 2D, the length of $v=(x, y)$ is given by Pythagoras's formula: $.|v|=\sqrt{x^{2}+y^{2}}$
In 3D, the length of $v=(x, y, z)$ is
In any dimension, the normalized vector of v is $v /|v|=v / \sqrt{v \cdot v}$

Translate to C

```
//Make an array to hold the attitude vector we want to set
float attTarget[3];
//Make an array to hold our Target's position
float targetPos[3] = \{0.3,0.3,0.3\};
//Make an array to hold our satellite to target relative vector
float satTargetRelVec[3];
int i;
//Calculate the relative vector and assign the attitude target
for (i=0; i<3; i++)
\{
            satTargetRelVec[i] = targetPos[i] - myState[i];
            attTarget[i] = satTargetRelVec[i];
\}
mathVecNormalize(attTarget, 1); //user's own predefined function
//Command the Satellite to face the target point
api.setAttitudeTarget(attTarget);
```


ROTATE THE ATTITUDE VECTOR OF THE SATELLITE

- Rotate the attitude vector of the satellite on a fixed plane (X-Y Plane) such that it sweeps a circle continuously

