
ARC

ZR API Overview

2 ARC

API Functions

This presentation will explain the basic movement functions of the Zero

Robotics Application Programming Interface. The following is an abbreviated

list of functions that are automatically included by the simulation, and can be

called by any user function. A full list of functions is available in the ZR API

documentation.

• init – one-time initialization function

• loop – the main user code loop

• api.setForces – apply an impulse to the satellite

• api.setPositionTarget – set a target position for the satellite to move to

• api.setVelocityTarget – set target velocity for the satellite to move at

• api.setAttitudeTarget – set the unit vector for the satellite to point along

• api.setTorques – apply a body-frame torque impulse to the satellite

• DEBUG – print a message to the console with information for debugging

3 ARC

Zero Robotics Control System

Your Code
tells the satellite

where to go

SPHERES

Estimator
SPHERES Controller

targets

uses your targets to

calculate thruster

commands

SPHERES

Satellite

determines where

the satellite is
fires thrusters at

specific times

firing times

state

4 ARC

void loop()

void loop();

• This is the starting point for user code. From loop() calls can be made

to other API functions or to other user-defined procedures.

• It is called once per second by the SPHERES control system in a

repeating loop. You should not include any infinite loops in your

loop() code.

• After loop() runs, the SPHERES control system converts the targets

specified with the api.set*() functions and converts them into thruster

impulses. The thruster impulses last for 200ms, after which the

SPHERES estimator starts estimating the position and orientation of the

satellite.

1s

loop Estimation loop

200ms 0s

5 ARC

api.get*State()

• The combination of position, velocity, orientation, and angular velocity is called the

satellite’s state.

• In ZR there are two types of state arrays defined in the API that differ in the way they

represent attitudes:

– typedef ZRState float[12] | void api.getMyZRState(ZRState state)

• Position (x, y, z)

• Velocity (vX, vY, vZ)

• Attitude Vector (nX, nY, nZ)

• Attitude rate (ωX, ωY, ωZ)

– (Advanced) typedef state_vector float[13] |

void api.getMySphState(state_vector state)

• Position (x, y, z)

• Velocity (vX, vY, vZ)

• Quaternion Attitude (q1 ,q2 ,q3 ,q4)

• Attitude rate (ωX, ωY, ωZ)

• The state of the other satellite can be retrieved with api.getOther*State

• A SPHERES state can be converted to a ZR state with api.spheresToZR

6 ARC

api.setPositionTarget

void api.setPositionTarget(float posTarget[3]);

• Input:

– posTarget[3] {x, y, z} Allows you to set the x, y, and z position targets for the

satellite control ssytem

– Units are in meters

• Commanding a position target activates

the SPHERES control system and will

result in the satellite firing thrusters.

+x

+y

+z

(x, y, z)

7 ARC

api.setVelocityTarget

void api.setVelocityTarget(float velTarget[3]);

• Input:

– velTarget[3] {vX, vY, vZ} sets the x, y, and z target velocities

– Units are in meters per second

• Can be combined with api.setPositionTarget

to follow a trajectory specified in terms

of position and velocity targets

• Commanding a velocity target activates

the SPHERES control system and will

result in the satellite firing thrusters.

 Target

velocities in

vX, vY, and vZ

+x

+y

+z

8 ARC

api.setForces

void api.setForces(float forces[3])

• Input:

− forces[3] {fx, fy, fz} Applies global frame x, y, and z impulses to the satellite

− Units are in Newton-seconds

• Since the thrusters only fire for at most 200ms at a constant thrust, the

“forces” commanded by this function are delivered as equivalent

impulses. The force commanded times

one csecond matches the thruster force

times the thruster on time.

• May be combined with

api.setPositionTarget and

api.setVelocityTarget

+x

+y

+z

Forces

applied in

x, y, and z

9 ARC

void api.setAttitudeTarget(float attTarget[3]);

• 1 Input

– attTarget[3] {nX, nY, nZ} sets the unit vector for the satellite to point its

Velcro (-X) along

– Units are dimensionless

• Allows you to point the satellite along a specific vector.

• This vector specifies a pointing

direction, not a pointing location.

• For more information on setting

Attitude, see the Rotate Tutorial. +x

+y

+z

+X
+Y

+Z (nX, nY, nZ)

api.setAttitiudeTarget

10 ARC

void api.setAttRateTarget(float rates[3])

• 1 input

– rates[3] {ωx , ω y , ω z } body-frame x, y, and z rotational rate targets

– Units are in rad/s

• This functions serves as the attitude equivalent of api.setVelocityTarget

• Note that the rotation rates are in the

body frame, not in the global frame.

• Can be combined with

api.setAttitudeTarget()

+x

+y

+z

+X
+Y

+Z

api.setAttRateTarget

11 ARC

void api.setTorques(float torques[3])

• 1 input

– torques[3] {τx , τy , τz } body-frame x, y, and z rotational impulses to be

applied to the satellites

– Units are Newton-meter-seconds

• Like the api.setForces command,

this command applies equivalent

rotational impulses to the supplied

torque commands.

 +x

+y

+z

+X
+Y

+Z

api.setTorques

12 ARC

void DEBUG((const char *format, ...))

• Variable number of inputs

– format “Text %d %f \n” is a string containing text and special format

characters to display variables. This string will be printed to the console

window, with format characters replaced by the current values of

corresponding variables.

– Subsequent parameters are the variables to be printed to the console, in

the order in which the format characters are displayed in format. These

can be ints (%d), floats (%f), doubles (%lf), strings (%s), etc.

• DEBUG statements are NOT counted toward total code size.

• The format string can be formatted using the same specifiers as those

in the C++ command printf().

DEBUG

http://www.cplusplus.com/reference/clibrary/cstdio/printf/

